33 resultados para mesoprous bioactive glasses

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The features and potential applications of a novel silicone for constructing or coating medical devices are described. The platform technology that has been developed reportedly overcomes inherent problems with existing silicone devices and allows drug delivery from devices employing the material.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study describes the formulation and physicochemical characterization of poly(acrylic acid) (PAA) organogels, designed as bioactive implants for improved treatment of infectious diseases of the oral cavity. Organogels were formulated containing a range of concentrations of PAA (3-10% w/w) and metronidazole (2 or 5% w/w, representing a model antimicrobial agent) in different nonaqueous solvents, namely, glycerol (Gly), polyethylene glycol (PEG 400), or propylene glycol (PG). Characterization of the organogels was performed using flow rheometry, compressional analysis, oscillatory rheometry, in vitro mucoadhesion, moisture uptake, and drug release, methods that provide information pertaining to the nonclinical and clinical use of these systems. Increasing the concentration of PAA significantly increased the consistency, compressibility, storage modulus, loss modulus, dynamic viscosity, mucoadhesion, and the rate of drug release. These observations may be accredited to enhanced molecular polymer entanglement. In addition, the choice of solvent directly affected the physicochemical parameters of the organogels, with noticeable differences observed between the three solvents examined. These differences were accredited to the nature of the interaction of PAA with each solvent and, importantly, the density of the resultant physical cross-links. Good correlation was observed between the viscoelastic properties and drug release, with the exception of glycerol-based formulations containing 5 and 10% w/w PAA. This disparity was due to excessive swelling during the dissolution analysis. Ideally, formulations should exhibit controlled drug release, high viscoelasticity, and mucoadhesion, but should flow under minimal stresses. Based on these criteria, PEG 400-based organogels composed of 5% or 10% w/w PAA exhibited suitable physicochemical properties and are suggested to be a potentially interesting strategy for use as bioactive implants designed for use in the oral cavity. © 2008 American Chemical Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new method for introducing enzymes into cellulosic matrixes which can be formed into membranes, films, or beads has been developed using a cellulose-in-ionic-liquid dissolution and regeneration process. Initial results on the formation of thin cellulose films incorporating dispersed laccase indicate that active enzyme-encapsulated films can be prepared using this methodology and that precoating the enzyme with a second. hydrophobic ionic liquid prior to dispersion in the cellulose/ionic liquid solution can provide an increase in enzyme activity relative to that of untreated films, presumably by providing a stabilizing microenvironment for the enzyme.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The solubility and uniform distribution of lanthanide complexes in sol-get glasses can be improved by covalently linking the complexes to the sol-gel matrix. In this study, several lanthanide beta-diketonate complexes (Ln = Nd, Sm, Eu, Tb, Er, Yb) were immobilized on a 1,10-phenanthroline functionalized sol-gel glass. For the europium(Ill) complex, a sol-gel material of diethoxydimethylsilane (DEDMS) with polymer-like properties was derived. For the other lanthanide complexes, the sol-gel glass was prepared by using a matrix of tetramethoxysilane (TMOS) and DEDMS. Both systems were prepared under neutral reaction conditions. High-resolution emission and excitation spectra were recorded. The luminescence lifetimes were measured. (c) 2004 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Venom of the Gila Monster (Heloderma suspectum) has proven to be an unlikely source of lead compounds (exendins) for the development of new injectable peptide therapeutics for the treatment of Type 2 diabetes. However, no systematic searches for new classes of bioactive peptides in lizard venom have appeared until recently. Here we describe the discovery of a new class of peptides – the helokinestatins – from H. suspectum venom, their structural characterisation and that of their biosynthetic precursors from cloned cDNA. In addition, we have subjected members of the family to preliminary pharmacological characterisation. Helokinestatins 1–6 are a family of proline-rich peptides containing 10–15 amino acid residues terminating in a common -Pro-Arg.OH motif. They are encoded in tandem within two virtually identical biosynthetic precursors of 177 and 178 amino acid residues, differing by only a single Pro residue. Each precursor also encodes a single copy of a C-type natriuretic peptide located at the C-terminus. Synthetic replicates of all helokinestatins were shown to be devoid of any direct action on the smooth muscle of rat tail artery but were found to be potent inhibitors of bradykinin-induced relaxation in this preparation in a manner that is suggestive of a non-competitive mechanism. Helokinestatin-3 (VPPPPLQMPLIPR) and helokinestatin-5 (VPPPLQMPLIPR) were found to be most potent in this respect causing almost complete inhibition of bradykinin-induced relaxation. Helokinestatins and BPPs may have a shared evolutionary history but the former do not inhibit ACE. The bradykinin inhibitory potential of helokinestatins may be exploited in the local control of chronic inflammation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Here we report the identification of a new family of helminth neuropeptides with members in both nematodes and flatworms, and include preliminary cell biological and functional characterisation of one of the peptides from the trematode parasite of humans, Schistosoma mansoni. Bioinformatics and Rapid Amplification of cDNA Ends (RACE)-PCR were used to identify the completes. mansoni neuropeptide precursor gene Sm-npp-1, which encodes three pentapeptides bearing the motif (A/G)FVR(I/L).NH2. Similar peptides were identified in three other flatworm species and in 15 nematode species. Quantitative PCR (qPCR) and immunocytochemical (ICC) analyses showed that Sm-npp-1 is constitutively expressed in larval and adult worms. ICC and confocal microscopy were employed to localise one of the schistosome NPP-1 peptides (GFVRIamide) in adult worms and schistosomules; antibodies labelled a pair of neurones in the cerebral ganglia that extend posteriorly along the main nerve cords. GFVRIamide displayed no detectable co-localisation with FMRFamide-like peptides (FLPs), nor was it detectable in muscle innervation. Exogenously applied peptide had a significant inhibitory effect on the mobility of whole adult worm pairs at 10(-5) M (n = 9). Finally, we explored Sm-npp-1 function in schistosomules using RNA interference (RNAi); we successfully achieved specific knockdown of the Sm-npp-1 transcript (54.46 +/- 10.41% knockdown, n = 3), but did not detect any clear, aberrant mobility or morphological phenotypes. NPP-1-like peptides are a new family of helminth peptides with a cell-specific expression pattern distinct from FLPs and a modulatory effect on schistosome muscular activity. (C) 2011 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thermoresponsive polymeric platforms are used to optimise drug delivery in pharmaceutical systems and bioactive medical devices. However, the practical application of these systems is compromised by their poor mechanical properties. This study describes the design of thermoresponsive semi-interpenetrating polymer networks (s-IPNs) based on cross-linked p(NIPAA) or p(NIPAA-co-HEMA) hydrogels containing poly(e-caprolactone) designed to address this issue. Using DSC, the lower critical solution temperature of the co-polymer and p(NIPAA) matrices were circa 34 °C and 32 °C, respectively. PCL was physically dispersed within the hydrogel matrices as confirmed using confocal scanning laser microscopy and DSC and resulted in marked changes in the mechanical properties (ultimate tensile strength, Young's modulus) without adversely compromising the elongation properties. P(NIPAA) networks containing dispersed PCL exhibited thermoresponsive swelling properties following immersion in buffer (pH 7), with the equilibrium-swelling ratio being greater at 20 °C than 37 °C and greatest for p(NIPAA)/PCL systems at 20 °C. The incorporation of PCL significantly lowered the equilibrium swelling ratio of the various networks but this was not deemed practically significant for s-IPNs based on p(NIPAA). Thermoresponsive release of metronidazole was observed from s-IPN composed of p(NIPAA)/PCL at 37 °C but not from p(NIPAA-co-HEMA)/PCL at this temperature. In all other platforms, drug release at 20 °C was significantly similar to that at 37 °C and was diffusion controlled. This study has uniquely described a strategy by which thermoresponsive drug release may be performed from polymeric platforms with highly elastic properties. It is proposed that these materials may be used clinically as bioactive endotracheal tubes, designed to offer enhanced resistance to ventilator associated pneumonia, a clinical condition associated with the use of endotracheal tubes where stimulus responsive drug release from biomaterials of significant mechanical properties would be advantageous. © 2012 Elsevier B.V. All rights reserved.